
CS 668 - Spring ‘06 
 

Student Research Presentations 
(RB 122) 

 
 

Date/Time Presenter Title 
Monday, April 10 
4:00 pm 

Fabien Poulard 
 

Utility of random generated graphs to 
optimize peer-to-peer networks 

Monday, April 10 
4:30 pm 

Todd Chaffins 
 

Performance Comparison of Vertex 
Coloring Algorithms on CPUs and GPUs 

Wednesday, April 12 
4:00 pm 

James Haberly 
 

Graph-theoretic image processing 
techniques 

Wednesday, April 12 
4:30 pm 

Mahbub Majumder Graceful labeling of trees 

Monday, April 17 
4:00 pm 

Hsiaoying Su Path-finding - An application of graph 
theory in computer games 

Monday, April 17 
4:30 pm 

Mandeep Singh 
Atwal 

Tree Vertex Splitting Problem - 
Applications to Distribution Networks 

Wednesday, April 19 
4:00 pm 

Bryan Ritz Analysis of Techniques Used in Drawing 
Graphs with Subgraphs (with Case Study) 

 
 

See the following pages for abstracts. 

 1



Monday, April 10 
4:00 pm 

 
 Utility of random generated graphs to optimize peer-to-peer networks 

Fabien Poulard 
 

The first peer-to-peer networks emerged with the Gnutella protocol in the early 2000, 
thanks to a team of developers at Nullsoft. When tested in a lab, the protocol was able to 
manage some hundreds nodes; but when released, it was quickly used by thousands of 
users, creating as much nodes and revealing the weaknesses of its conception. Since then 
the peer-to-peer has evolved and some others protocols have appeared, fixing partially 
the weaknesses of Gnutella. However, those protocols do not really implement a real 
peer-to-peer network, but a kind of topologically hybrid network sharing characteristics 
of the decentralized topology and some characteristics from other topologies (most likely 
hierarchy and centralized).  
 
As at the origins the peer-to-peer was developed to share music files (Nullsoft develops a 
widely used mp3 player product) “illegally”, there was no more research to extend the 
capabilities and exploit the peer-to-peer networks. However, nowadays, peer-to-peer is 
considered as a possible topology for a lot of networks, and especially for the mobile 
device applications. So, improving the algorithms at the origin of Gnutella becomes 
industrially interesting.  
 
Much progress has been achieved in the last few years, especially due to graph theory. 
The main issues to resolve are about preserving the connectivity of the graph when 
adding or removing a peer and in making the graph evolve towards an expander graph to 
optimize the exchanges between clients. However, the huge constraint is to make that 
happen with a minimum number of transactions considering that each manipulation of 
the network implies latencies and loss of packets that will have to be resent. Another 
issue is the fault tolerance, as each node can fail due to the extreme heterogeneity of the 
network, it must always be possible to find another path from one node to another.  
 
The different techniques I will try to cover during the presentation are based on the 
random transformation of regular graphs and the de Bruijn graphs. We will see how they 
can be applied to the original Gnutella to improve its efficiency without losing its 
decentralized characteristics.  
 
References 
• Peer-to-peer Networks based on Random Transformations of Connected Regular 
Undirected Graphs, P. Mahlmann, C. Schindelhauer, ACM July 2005 
• Graph-Theoretic Analysis of Structured Peer-to-Peer Systems : Routing Distances and 
Fault Resilience, D. Loguinov, J. Casas, X. Wang, IEEE/ACM Transactions on 
Networking • Distributed Construction of Random Expander Networks, C. Law, K. Siu, 
IEEE INFOCOM 
• The diameter of random massive graphs, L. Lu, Proceedings of the twelfth annual 
ACMSIAM symposium on Discrete algorithms 
• Generating Random Regular Graphs, J.H. Kim, V.H. Vu, Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing 
• On the Fundamental Tradeoffs Between Routing Table Size and Network Diameter in 
Peer-to-peer Networks, J. Xu, IEEE INFOCOM 
 

 2



 
Monday, April 10 

4:30 pm 
 

Performance Comparison of Vertex Coloring Algorithms on CPUs and GPUs 
Todd Chaffins 

 
 

 Current high-end graphics processing units (GPUs) have evolved from dump co-
processors with fixed functionality into highly capable stream processors. [Purcell, et al. 
2002]  In the ever-growing games industry there is a demand to be able to create more 
realistic graphics and effects.  The current trend is to create these realistic graphics and 
effects through the use of graphics code known as shaders [Harris, et al. 2003].  Shaders 
are small pieces of code which determine how graphics are rendered on the screen.  
These shaders and their adoption in games require the graphics card manufacturers to 
create faster and more programmable GPUs.  This pressure will continue and as such the 
speed and programmability of GPUs are set to continue to increase as time goes on. 
[Christen 2005] 
 
 This increase in processing power and the parallel nature of GPUs has led to the 
adoption of the GPU for general purpose computations outside of the realm of graphics.  
While the GPU has made vaster architectural changes over recent years CPUs have also 
made advances.  Aside from the common increases associated with CPUs (clock speed 
and cache), CPUs have moved to be more parallel with a dual-core architecture.  With 
parallel vertex-coloring algorithms [Kale, et al. 1995] the question is raised as to which 
approach will yield the fastest results when performing vertex-coloring: CPU based, GPU 
based, or a hybrid CPU/GPU approach.  This research seeks to implement, instrument, 
and measure the performance of these approaches in a quantitative manner and evaluate 
the economy of these approaches. 
 
References: 
 
[Purcell, et al. 2002] Purcell, T.J., Buck, I., Mark, W.R. and Hanrahan, P. Ray Tracing on 

Programmable Graphics Hardware. In Proceedings of SIGGRAPH 2002, ACM / 
ACM Press. 2002. 

[Christen 2005] Christen M.: Ray Tracing on GPU. Diploma thesis, University of Applied 
Sciences Basel, Switzerland, 2005. 

[Kale, et al. 1995] L. V. Kale, B. H. Richards, and T. D. Allen. Efficient parallel graph 
coloring with prioritization. In Lecture Notes in Computer Science, volume 1068, 
pages 190{208. Springer-Verlag, August 1995. 

[Harris, et al. 2003] Mark Harris, Greg James, Physically-Based Simulation on Graphics 
Hardware, GameDevelopers Conference, 2003. 

 
 
 
 
 
 

 
 
 

 3



 
 

Wednesday, April 12 
4:00 pm 

 
Graph-theoretic image processing techniques 

James Haberly 
 

The aim of my proposed topic would be to present an exposition on Graph Theoretic 
approaches and algorithms as they’re being researched for use in image processing and 
machine vision. Some example problems in the area of image processing and machine 
vision are; computational complexity, object recognition, object measurement, image 
segmentation, edge detection, noise detection and filtering, line, arc and other feature 
detection, image coding and compression. 
 
The project will be focused on presenting how graph theoretic algorithms with examples 
such as the Prim and Kruskal algorithms for minimum spanning trees, Dijkstra’s and 
Dial's shortest path and graph theoretic Euclidean distance mapping techniques are 
being examined for problem solving in the image processing and machine vision fields.  
 
I do not want to yet limit the scope of this proposal by proposing an exposition on any 
one paper or problem since I’m just beginning the research phase of the project. A couple 
specific areas that may become the main focus of the project are:  
 
1. Improvements in computational speed using graph-theoretic image processing 
techniques [1]. 
 
2. Object recognition using a graph theoretical approach [2]. 
 
The image processing and machine vision industry is a fast growing and exciting field. 
I’m looking forward to researching the topic further. 
 
References: 
 
[1] “Faster Graph-Theoretic Image Processing via Small-World and Quadtree 
Topologies” Leo Grady and Eric L. Schwartz Dept. of Imaging & Visualization, Siemens 
Corp. Res. Inc., Princeton, NJ, USA; This paper appears in: Computer Vision and Pattern 
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society 
Conference on Publication Date: 27 June-2 July 2004 
Volume: 2, On page(s): II-360- II-365 Vol.2  
 
[2] "Color Invariant Object Recognition using Entropic Graphs" Jan C. van Gemert, 
Gertjan J. Burghouts, Frank J. Seinstra, Jan-Mark Geusebroek  Intelligent Systems Lab 
Amsterdam, Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ 
Amsterdam, The Netherlands.  
 
[3] “Graph-Theoretical Methods in Computer Vision” Ali Shokoufandeh1 and Sven 
Dickinson2 G.B. Khosrovshahi et al. (Eds.): Theoretical Aspects of Computer Science, 
LNCS 2292, pp. 148–174, 2002. 

 
 

 4



 
 
 
 

Wednesday, April 12 
4:30 pm 

 
Graceful labeling of Trees 

Mahbub Majumder 
 
A tree T with n vertices is said to be gracefully labeled if its vertices are labeled with the  
integers  [1..n]  such  that  the  edges,  when  labeled  with  the  difference between their 
endpoint vertex labels, are uniquely labeled with the integers [1..n-1]. If  T  can  be  
gracefully  labeled,  it  is  called  a  “graceful  tree”.  
 
The concept of graceful labeling of trees and graphs was introduced by Rosa (1967). The 
term “graceful labeling” was invented by Golomb (Golomb 1972). The Graceful Tree 
Conjecture states that all trees are graceful.  There have been over 670 papers to date on 
various graph labeling methods and issues (Gallian 2005). So far, no proof of the truth or 
falsity of the conjecture has been found. Even though the conjecture is open, some 
partial results have been proved (Gallian 2005). 
 
My motivation in pursuing this project came from its nature and the study many people 
have put into it. My aim with this project work is to  
 

1. Find out current works and results. 
2. Study and understand the condition of gracefulness  
3. If possible, add some ideas in graceful Labeling 

 
 
References: 
 
Gallian J. A., A Dynamic Survey of Graph Labeling (2005), Electronic Journal of 
Combinatorics. 
 
Golomb S.W. How to number a graph. In R.C. Read, editor, Graph Theory and 
Computing, pages 23-37. Academic Press, 1972.
 
Rosa A., On certain valuations of the vertices of a graph, Theory of Graphs (Internat. 
Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967) 349-
355. 
 

 5



Monday, April 17 
4:00 pm 

 
Path-finding - An application of graph theory in computer games 

Hsiaoying Su 
 

Graph theory is widely used in solving and presenting computer games.  One of the 
most common applications is path-finding.  Path-finding algorithms grant agents in the 
virtual world the ability to consciously find their own way around the land.  They can 
also be used in real life to find driving directions, such as the service offered by many 
popular web sites.  The project is going to focus on the game implementation. 

 
Path-finding algorithms are usually, but not only, used in computer games catalogued 

as role playing games (RPGs).  Programmers build a virtual world for the games.  The 
characters, or called autonomous agents, have certain level of artificial intelligence.  The 
simplest way to present their intelligence is to find their own paths moving around the 
world without hitting a tree or going through a wall.  The successful implementation of 
path-finding is important to the artificial intelligence performance of a game. 

 
According to the numbers of sources and destinations, path-finding algorithms can be 

roughly divided into three categories: single source, single pair, and all pairs.  In single 
source algorithms, the path from one node to all the others is required.  However, single 
pair algorithms take a specific source and destination.  Only one path is required in 
response.  The all pairs algorithm returns the shortest paths from every node to all other 
nodes. 

 
This project plans to explore different path-finding algorithms and their complexity.  

Furthermore, coding these algorithms in JEdit and practically experiment their 
efficiency.  In single source algorithms, Dijkstra’s Algorithm and Bellman-Ford-Moore, 
which deals with negative arc-lengths graph, would be discussed.  Then, the most 
popular algorithm A* (A star) would be presented to implement single-pair shortest path 
finding.  To find out all-pairs shortest paths, the algorithms described above could be 
used in a naïve but inefficient way.  The project then would seek out whether there exist 
more efficient algorithms to solve the problem. 

 
Path-finding related topics have been discussed on more application than research.  

However, there are still some interesting studies going on.  One of a recent research is 
about solving incoherent behavior of multiple units in a cluttered environment.  Another 
one is to discuss an open problem of emulating the rich complexity of real pedestrians in 
urban environment.  The two papers are listed below as references. 
 
References  
• Kamphuis A., Overmars M. H.: Motion planning: Finding Paths for Coherent Groups 

using Clearance.  In Eurographics/ACM SIGGRAPH Symposium on Computer 
Animation (2004).  

• Shao W., Terzopoulos D.: Artificial intelligence for animation: Autonomous 
pedestrians.  In Eurographics/ACM SIGGRAPH Symposium on Computer Animation 
(2005). 

 
 
 

 6



 
Monday, April 17 

4:30 pm 
 

Tree Vertex Splitting Problem - Applications to Distribution Networks 
Mandeep Singh Atwal 

 
In an Ethernet network, the number of connections (taps) and their intervening 
distances are limiting factors [BN90]. Repeaters are used to regenerate the signal every 
500 meters or so [BN90]. If these repeaters were not used, “standing waves” (additive 
reflections) would distort the signal and cause errors [BN90]. Because collision detection 
depends partly on timing, only five 500-meter segments and four repeaters can be placed 
in series before the propagation delay becomes longer than the maximum allowed time 
period for detecting a collision [BN90].  
 
Directed acyclic graphs (dags) or directed trees can be used to model such 
interconnection networks. Each edge of such a tree is labeled with a real number called 
its weight. Trees with edge weights are called weighted trees. Nodes or vertices in the 
tree correspond to receiving stations and edges correspond to transmission lines 
[HSR98]. Each edge weight corresponds to the delay in traversing that edge [HSR98]. 
However, as stated above, the network may not be able to tolerate losses in signal 
strength beyond a certain level.  
 
In places where the loss exceeds the tolerance level, repeaters have to be placed. Given a 
network and a loss tolerance level Tree Vertex Splitting Problem is to determine an 
optimal placement of repeaters.  
 
RESEARCH OBJECTIVES  
The proposed research aims at the study of Tree Vertex Splitting Problem (TVSP). 
Designing the algorithms for TVSP and analyzing in terms of the computing time and 
space requirements. The most efficient algorithm can then possibly be implemented in 
C++/Java.  
However, it is not an objective to implement the algorithm for the proposed study.  
 
REFERENCES  
[BN90] Barry Nance, Network Programming in C, QUE Corporation 1990,  
ISBN: 0-88022-569-6, page # 23.  
[HSR98] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Fundamentals of 
Computer Algorithms, Galgotia Publications’ Pvt. Ltd. 1998,  
ISBN: 81-7515-257-5, page # 203.  
[PRS98] Doowon Paik, Sudhakar Reddy, Sartaj Sahni, Vertex Splitting In Dags And 
Application To Partial Scan Designs And Lossy Circuits, International Journal of 
Foundations of Computer Science, 1998.  
[ME93] Matthias Mayer, Fikret Ercal, Genetic Algorithms for Vertex Splitting in DAGs, 
Proceedings of the 5th International Conference on Genetic Algorithms, 1993, ISBN: 1-
55860-299-2  
[SR96] Stephanie Forrest, Genetic Algorithms, ACM Computing Surveys, Vol. 28, No. 1, 
March 1996.  
 

 
 

 7



 
 
 

Wednesday, April 19 
4:00 pm 

 
Analysis of Techniques Used in Drawing Graphs with Subgraphs  

(with Case Study) 
Bryan Ritz 

 
In the paper “Drawing Graphs Within Graphs” [5] by Paul Holleis, Thomas 
Zimmermann, and Daniel Gmach, the authors present methods for helping to reduce 
complexity of large and complicated graphs and subgraphs.  The methods of finding an 
optimal layout of subgraphs and a summary graph, of the use of connection sets, and of 
the use of motifs are all combined into an approach for emphasizing subgraphs within 
graphs.  This paper will attempt to evaluate the worthiness of these methods through 
examination of sources used in the paper and by applying the methods to a case study in 
the form of a complex graph (displayed using JEdit). 
 

References: 
1.  F. J. Brandenburg.  Graph clustering 1: Cycles of cliques.  In Proceedings of the Graph 
Drawing 1997, volume 1353 of Lecture Notes in Computer Science, Berlin, Germany, 
1997.  Springer. 
 
2.  G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.  Graph Drawing: Algorithms 
for the Visualization of Graphs.  Prentice-Hall, Englewood Cliffs, N.J., 1999. 
 
3.  T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed 
placement.  Software-Practice and Experience, 21(11):1129-1164, 1991. 
 
4.  T. Kamada and S. Kawai.  An algorithm for drawing general undirected graphs.  
Information Processing Letters, 31(1):7-15, 1989. 
 
5.  P. Holleis, T. Zimmermann, D. Gmach.  Drawing Graphs Within Graphs.  Journal of 
Graph Algorithms and Applications, 9(1):7-18, 2005. 
 
Case Study will use TouchGraph as applied to cs.bsu.edu.  
1) Go to http://www.touchgraph.com/TGGoogleBrowser.html 
2) Enter “cs.bsu.edu” without the quotes in the text field and hit enter. 
 

 

 8


